
© 2013-2022 SignalCore, Inc.
support@signalcore.com

SC5506B
25 MHz to 6 GHz RF Signal Source
USB, SPI and RS-232 Interfaces

Operating & Programming Manual

SC5506B Operating & Programming Manual Rev 1.2.2 i

C O N T E N T S

Important Information .. 1

Warranty... 1

Copyright & Trademarks .. 2

International Materials Declarations ... 2

CE European Union EMC & Safety Compliance Declaration .. 2

Recycling Information ... 3

Warnings Regarding Use of SignalCore Products ... 3

Getting Started ... 4

Unpacking ... 4

Verifying the Contents of your Shipment ... 4

Setting Up and Configuring the SC5506B ... 4

Power Connection 5

Signal Connections 5

Communication Connections 6

Reset Button 7

Indicator LEDs 7

SC5506B Theory of Operation ... 8

Output Amplitude Control.. 8

Frequency Synthesizer ... 9

Reference Clock Control ... 10

Harmonics and Range of Operation ... 10

Channel Standby and RF Enable ... 10

Modes of RF Generation .. 10

Sweep Function 11

List Function 11

Sweep Direction 11

Sweep Waveform 11

Dwell Time 11

List Cycles 12

SC5506B Operating & Programming Manual Rev 1.2.2 ii

Trigger Sources 12

Hardware Trigger Modes 12

Trigger Out Modes 12

Default Startup Mode ... 13

SC5506B Programming Interface ... 14

Device Drivers ... 14

Using the Application Programming Interface (API) .. 14

SPI and RS-232 Programming ... 15

Setting the SC5506B: Writing to Configuration Registers 16

Configuration Registers .. 16

Initializing the Device ... 18

Setting the System Active LED .. 18

Setting the RF Mode (Fix/List) .. 18

Setting the List Behavior ... 18

Setting the Sweep Frequencies .. 19

Setting the Sweep/List Dwell Time ... 19

Setting the List Cycle Count .. 19

Setting the List Buffer Size .. 19

Populating the List Buffer ... 19

Transferring the List Buffer to and from EEPROM ... 19

Software Trigger ... 20

Setting the RF Frequency ... 20

Setting the RF Power .. 20

Setting RF Output Enable ... 20

Disabling the Auto Level Feature ... 20

Setting the RF Automatic Level Control (ALC) Mode ... 20

Setting the Device Standby Mode .. 20

Setting the Reference Clock ... 21

Writing to the User EEPROM .. 21

Setting the Reference DAC Value ... 21

Storing the Startup State .. 21

Setting the RF ALC DAC Value .. 21

SC5506B Operating & Programming Manual Rev 1.2.2 iii

Querying the SC5506B: Writing to Request Registers .. 22

Reading the Device Temperature ... 22

Reading the Device Status .. 23

Reading the User EEPROM ... 23

Reading the Current RF Parameters ... 24

Reading the Device Information ... 24

Reading the LIST BUFFER Value .. 24

Reading the RF ALC DAC Value ... 24

Calibration EEPROM Map ... 25

USB Software API Library Functions .. 26

Constants Definitions ... 28

Type Definitions .. 29

Function Definitions and Usage ... 30

Serial Peripheral Interface (SPI) .. 39

Writing the SPI Bus ... 40

Reading the SPI Bus .. 40

Programming the RS-232 Interface ... 42

Writing to the Device via RS-232 .. 42

Reading from the Device via RS-232 .. 42

RS-232 WindowsTM API ... 42

RS-232 LabVIEW functions ... 43

Calibration & Maintenance ... 44

Revision Notes .. 45

SC5506B Operating & Programming Manual Rev 1.2.2 1

I M P O R T A N T I N F O R M A T I O N

Warranty

This product is warranted against defects in materials and workmanship for a period of three years from
the date of shipment. SignalCore will, at its option, repair or replace equipment that proves to be
defective during the warranty period. This warranty includes parts and labor.

Before any equipment will be accepted for warranty repair or replacement, a Return Material
Authorization (RMA) number must be obtained from a SignalCore customer service representative and
clearly marked on the outside of the return package. SignalCore will pay all shipping costs relating to
warranty repair or replacement.

SignalCore strives to make the information in this document as accurate as possible. The document has

been carefully reviewed for technical and typographic accuracy. In the event that technical or

typographical errors exist, SignalCore reserves the right to make changes to subsequent editions of this

document without prior notice to possessors of this edition. Please contact SignalCore if errors are

suspected. In no event shall SignalCore be liable for any damages arising out of or related to this

document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, SIGNALCORE, INCORPORATED MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF SIGNALCORE, INCORPORATED SHALL BE LIMITED TO THE AMOUNT

THERETOFORE PAID BY THE CUSTOMER. SIGNALCORE, INCORPORATED WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the

liability of SignalCore, Incorporated will apply regardless of the form of action, whether in contract or

tort, including negligence. Any action against SignalCore, Incorporated must be brought within one year

after the cause of action accrues. SignalCore, Incorporated shall not be liable for any delay in

performance due to causes beyond its reasonable control. The warranty provided herein does not cover

damages, defects, malfunctions, or service failures caused by owner’s failure to follow SignalCore,

Incorporated’s installation, operation, or maintenance instructions; owner’s modification of the product;

owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of

third parties, or other events outside reasonable control.

SC5506B Operating & Programming Manual Rev 1.2.2 2

Copyright & Trademarks

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic

or mechanical, including photocopying, recording, storing in an information retrieval system, or

translating, in whole or in part, without the prior written consent of SignalCore, Incorporated.

SignalCore, Incorporated respects the intellectual property rights of others, and we ask those who use

our products to do the same. Our products are protected by copyright and other intellectual property

laws. Use of SignalCore products is restricted to applications that do not infringe on the intellectual

property rights of others.

“SignalCore”, “signalcore.com”, and the phrase “preserving signal integrity” are registered trademarks

of SignalCore, Incorporated. Other product and company names mentioned herein are trademarks or

trade names of their respective companies.

International Materials Declarations

SignalCore, Incorporated uses a fully RoHS compliant manufacturing process for our products.

Therefore, SignalCore hereby declares that its products do not contain restricted materials as defined by

European Union directive 2002/95/EC (EU RoHS) in any amounts higher than limits stated in the

directive. This statement is based on the assumption of reliable information and data provided by our

component suppliers and may not have been independently verified through other means. For products

sold into China, we also comply with the “Administrative Measure on the Control of Pollution Caused by

Electronic Information Products” (China RoHS). In the current stage of this legislation, the content of six

hazardous materials must be explicitly declared. Each of those materials, and the categorical amount

present in our products, are shown below:

組成名稱

Model Name

鉛

Lead

(Pb)

汞

Mercury

(Hg)

镉

Cadmium

(Cd)

六价铬

Hexavalent

Chromium

(Cr(VI))

多溴联苯

Polybrominated

biphenyls

(PBB)

多溴二苯醚

Polybrominated

diphenyl ethers

(PBDE)

SC5506B ✓ ✓ ✓ ✓ ✓ ✓

A ✓ indicates that the hazardous substance contained in all of the homogeneous materials for this

product is below the limit requirement in SJ/T11363-2006. An X indicates that the particular hazardous

substance contained in at least one of the homogeneous materials used for this product is above the

limit requirement in SJ/T11363-2006.

CE European Union EMC & Safety Compliance Declaration

The European Conformity (CE) marking is affixed to products with input of 50 - 1,000 VAC or 75 - 1,500

VDC and/or for products which may cause or be affected by electromagnetic disturbance. The CE

marking symbolizes conformity of the product with the applicable requirements. CE compliance is a

manufacturer’s self-declaration allowing products to circulate freely within the European Union (EU).

SC5506B Operating & Programming Manual Rev 1.2.2 3

SignalCore products meet the essential requirements of Directives 2014/30/EU (EMC) and 2014/35/EU

(product safety) and comply with the relevant standards. Standards for Measurement, Control and

Laboratory Equipment include EN 61326-1:2013 and EN 55011:2009 for EMC, and EN 61010-1 for

product safety.

Recycling Information

All products sold by SignalCore eventually reach the end of their useful life. SignalCore complies with EU

Directive 2012/19/EU regarding Waste Electrical and Electronic Equipment (WEEE).

Warnings Regarding Use of SignalCore Products

(1)
PRODUCTS FOR SALE BY SIGNALCORE, INCORPORATED ARE NOT DESIGNED WITH COMPONENTS NOR TESTED FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT
SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2)

IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE
FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS,
COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN
APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF
ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE),
UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS
THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A
RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE SOLELY RELIANT
UPON ANY ONE COMPONENT DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR
APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT
LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM
SIGNALCORE' TESTING PLATFORMS, AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE SIGNALCORE PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY SIGNALCORE, THE USER OR
APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF SIGNALCORE PRODUCTS
WHENEVER SIGNALCORE PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE
APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

SC5506B Operating & Programming Manual Rev 1.2.2 4

• Ground yourself using a grounding strap or by touching a grounded metal object.

• Touch the antistatic bag to a grounded metal object before removing the hardware

from its packaging.

• Never touch exposed signal pins. Due to the inherent performance degradation

caused by ESD protection circuits in the RF path, the device has minimal ESD

protection against direct injection of ESD into the RF signal pins.

• When not in use, store all SignalCore products in their original antistatic bags.

G E T T I N G S T A R T E D

Unpacking

All SignalCore products ship in antistatic packaging (bags) to prevent damage from electrostatic

discharge (ESD). Under certain conditions, an ESD event can instantly and permanently damage several

of the components found in SignalCore products. Therefore, to avoid damage when handling any

SignalCore hardware, you must take the following precautions:

Remove the product from its packaging and inspect it for loose components or any signs of damage.

Notify SignalCore immediately if the product appears damaged in any way.

Verifying the Contents of your Shipment

Verify that your SC5506B kit contains the following items:

Quantity Item

1 SC5506B Dual Channel RF Signal Source

1 Software Installation USB Flash Drive (may be combined with other products onto a single drive)

Setting Up and Configuring the SC5506B

The SC5506B is a core module-based RF signal source with all I/O connections and indicators located on

the front face of the module as shown in Figure 1. Each location is discussed in further detail below.

Figure 1. Front view of the SC5506B showing user I/O locations.

!

SC5506B Operating & Programming Manual Rev 1.2.2 5

 Power Connection

Power is provided to the device through a two-position screw terminal block connection as shown in

Figure 1. Proper operation of the device requires +12 VDC source and ground return wires capable of

delivering a minimum current of 1.5 Amps. The polarity of the connector is shown on the front panel of

the RF module, just above the screw terminal block.

 Signal Connections

All signal connections (ports) on the SC5506B are SMA-type. Exercise caution when fastening cables to

the signal connections. Over-tightening any connection can cause permanent damage to the device.

The condition of your system‘s signal connections can significantly affect measurement

accuracy and repeatability. Improperly mated connections or dirty, damaged or worn

connectors can degrade measurement performance. Clean out any loose, dry debris from

connectors with clean, low-pressure air (available in spray cans from office supply stores).

If deeper cleaning is necessary, use lint-free swabs and isopropyl alcohol to gently clean

inside the connector barrel and the external threads. Do not mate connectors until the

alcohol has completely evaporated. Excess liquid alcohol trapped inside the connector may

take several days to fully evaporate and may degrade measurement performance until fully

evaporated.

Tighten all SMA connections to 5 in-lb max (56 N-cm max).

RF OUT

CHANNEL 1

This port outputs the tunable RF signal from channel 1 of the source. The

connector is SMA female. The nominal output impedance is 50 Ω.

RF OUT

CHANNEL 2

This port outputs the tunable RF signal from channel 2 of the source. The

connector is SMA female. The nominal output impedance is 50 Ω.

REF OUT This port outputs the internal 10 MHz reference clock. The connector is SMA

female. This port is AC-coupled with a nominal output impedance of 50 Ω.

REF IN This port accepts an external 10 MHz reference signal, allowing an external

source to synchronize the internal reference clock. The connector is SMA

female. This port is AC-coupled with a nominal input impedance of 50 Ω.

Maximum input power is +13 dBm.

!

!

2

1

SC5506B Operating & Programming Manual Rev 1.2.2 6

 Communication Connections

The SC5506B uses a mini-USB Type B connector (for USB communication) and a micro-HDMI (for SPI or

RS-232 communication, depending on the version ordered) to communicate with the device. The USB

port uses the standard USB 2.0 protocol found on most host computers. The pinout of this connector,

viewed from the front of the module, is listed in Table 1.

Table 1. Pinout of the SC5506B USB communication connector.

Pin Number USB Function Description
1 VBUS Vcc (+5 Volts)

2 D – Serial data

3 D + Serial data

4 ID Not used

5 GND Device ground (also tied to connector shell)

The user can also communicate with the device through the micro-HDMI type-D port. Depending on the

version ordered, this connector provides either the SPI or RS-232 communication path, as well as

hardware trigger. The pinout of this connector, viewed from the front of the module, is listed in Table 2.

Table 2. Pinout of the SC5506B micro-HDMI connector for either SPI or RS-232 communication.

Pin Number SPI Function RS-232 Function
3 MISO TxD

5 – RTS

8 reset_b
reset__b 9 MOSI RxD

11 CS CTS

15 SRLDY –

17 CLK CLK

18 SPI MODE BAUD SELECT

6 Trigger In

1 Trigger Out

4, 7, 10, 13, 16 GND GND

2, 8, 12, 14, 19 NC NC

3

4

SC5506B Operating & Programming Manual Rev 1.2.2 7

 Reset Button

Depressing this momentary-action push button switch will reset the device to its default state. The

SC5506B has the ability to store the current configuration at any point as the default setting. If the

factory setting has been overwritten with a saved user configuration, resetting the device will reinitialize

the device to the saved user configuration. Otherwise, resetting the device will restore the factory

configuration. Refer to the table in the “Default Startup Mode” section of this manual for default

settings.

 Indicator LEDs

The SC5506B provides visual indication of important modes. There are three LED indicators on the unit.

Their behavior under different operating conditions is shown in Table 3.

Table 3. LED indicator states.

LED Color Definition

STATUS Green “Power good” and all oscillators phase-locked

STATUS Orange Channel powered down

STATUS Red One or more oscillators off lock

STATUS Off Power fault

ACTIVE Green/Off
Device is open (green) /closed (off) , this indicator is also

user programmable (see register map)

5

SC5506B Operating & Programming Manual Rev 1.2.2 8

S C 5 5 0 6 B T H E O R Y O F O P E R A T I O N

Output Amplitude Control

As shown in Figure 2, the SC5506B source architecture at a high level consists of an output amplitude

control section and a frequency synthesis section. The amplitude of the signal is controlled through the

use of digital step attenuators (DSAs) and a voltage controlled attenuator (VCA). The DSAs provide the

coarse-step tuning over a wide range while the VCA provides fine tune correction to the DSAs. The VCA

is part of the automatic level control loop (ALC), which additionally consists of an RF amplifier, a power

detector, and an integrator. The ALC loop can be closed or open. In the closed loop mode, the power

detector outputs a voltage proportional to the power it detects. This voltage is compared to that of the

reference ALC DAC voltage, which in turn is set for some calibrated power level. Voltage error between

the detector voltage and the ALC DAC voltage drives the integrator output in the direction that will vary

the VCA to achieve the desired output power level. When the ALC control loop is opened, the power

detector output voltage is grounded, and the integrator is configured as a voltage buffer that drives the

ALC DAC voltage to the VCA. In this mode, the ALC DAC voltage directly drives the VCA with voltage

levels that correspond to calibrated output power levels.

There are advantages and disadvantages to either of these two amplitude control modes. On one hand,

the open loop mode has an advantage over the closed loop mode when close-in carrier amplitude noise

is a concern. ALC loops do introduce some level of amplitude modulated noise onto the carrier signal,

and these levels may not be acceptable (although they are generally lower than the phase noise).

SignalCore offers the user the option to open the ALC loop to remove any unwanted AM noise that

results from closed loop control. Another side effect of the closed loop is that the frequency bandwidth

of the ALC loop may slow down amplitude settling. Typically, in order to keep AM noise low and close (in

offset frequency) to the signal, the loop bandwidth is also kept low. As a result, the settling time is

increased.

On the other hand, a closed loop ALC provides better amplitude control over the entire frequency range.

With a temperature-stable ALC DAC, the closed loop will precisely maintain the power at the detector,

mitigating errors in the components prior to it in the signal path. Temperature-induced errors in

components and abrupt amplitude changes when switching filters in the filter banks contribute to errors

in the amplitude of the signal. However, these errors occur before the power detector and are

compensated by the feedback loop action. Errors in amplitude are thus confined to the output

attenuators, amplifiers, and the loop components. When the loop is opened, amplitude errors resulting

from all parts of the amplitude control section as well as the synthesizer section will affect the overall

output amplitude accuracy. In particular, when the filters within the filter bank are switched from one to

another, the signal experiences abrupt discontinuities in its amplitude which the open loop calibration

cannot appropriately account for in its correction algorithm.

Setting of the amplitude control components are performed automatically by the system, although the

user may chose to override the ALC DAC value if needed. In Figure 2, the labels in red indicate

parameters or devices which the user has direct control over.

SC5506B Operating & Programming Manual Rev 1.2.2 9

Frequency Synthesizer

The synthesizer section of the SC5506B comprises a multiple phase-locked loop architecture whose base

frequency reference is a 10 MHz TCXO. The user may choose to phase-lock this base reference to an

external source if required. The 100 MHz VCXO is phase-locked to the TCXO for frequency stability.

While the TCXO determines the very close-in phase noise, the VCXO phase noise determines the system

phase noise in the frequency offset range of approximately 1 kHz to 30 kHz. The 100 MHz VCXO provides

the reference signal to the main RF signal synthesizer, which is comprised of three phase-locked loops

(PLLs) and a direct digital synthesis (DDS) oscillator. The “fine” PLL provides a tuning resolution of few

millihertz over a narrow frequency range, while the “coarse” PLL tunes in steps of a few megahertz over

several gigahertz of range. The “main” or summing PLL combines the signals of the “coarse” and “fine”

loops into one broad tuning signal with fine tuning capability.

Figure 2. Simplified block diagram of the SC5506B dual channel RF signal source.

Using this multiple loop approach produces signals with low phase noise and low phase spurs, high

levels of which exist in single loop architectures such as single fractional-N PLLs. Although a single

fractional-N type PLL may provide fine resolution, its large fractional spurs may make it unusable in

certain parts of the band - especially at frequency regions close the integer boundaries. A multiple loop

architecture allows fine tuning with extremely low phase spurs.



N

N

N

N



N

N

N

N

A

M

CH2

CH1

REF

OUT

REF

IN

REF

DAC

ALC

DAC
ALC

MODE

ALC

DAC

ALC

MODE

10 MHz

TCXO

100

MHz

VCXO

DDS

DDS

COARSE

PLL

FINE PLL

MAIN PLL

FINE PLL

MAIN PLL

COARSE

PLL

ALC LOOP

ALC LOOP

FILTER

BANK

FILTER

BANK

3-6 GHz

3-6 GHz

1,2,4,..128

1,2,4,..128

VCA

VCA

REF

OUT

ENABLE

LCK

EXT

REF

0-60 dB

DSA

0-60 dB

DSA

SC5506B Operating & Programming Manual Rev 1.2.2 10

Reference Clock Control

As mentioned above, the primary clock reference for the SC5506B is an onboard 10 MHz TCXO. Should

the user require better frequency stability and/or accuracy, this TCXO can be programmed to phase-lock

to an external source such as an OCXO or rubidium clock. The device can also be programmed to export

its internal 10 MHz clock. To adjust the accuracy of the TCXO as needed (e.g., to correct for long-term

accuracy drift), the user may vary the reference DAC voltage by writing the REFERENCE_DAC_VALUE

register.

Harmonics and Range of Operation

The SC5506B’s guaranteed operating frequency range is 25 MHz to 6.0 GHz. At lower frequencies of

operation (200 MHz and lower), the harmonics of the signal can potentially be observed as high as -10

dBc at 0 dBm output. This is due to the limited space available for additional filtering in these ranges. At

lower frequencies, the large physical size of appropriate filters makes it impossible to accommodate

them within the compact form of this device. Furthermore, as the low frequencies are synthesized

through frequency dividers, their output waveforms become more “square” than sinusoidal, giving rise

to higher odd-order harmonics.

The device is specified to a maximum calibrated level of +10 dBm, although the maximum calibrated

output is greater than that in most regions of the spectrum. The accuracy degrades as the amplitude

approaches the compression point due to the linear approximation in the correction algorithm. As a

general rule however, the lower the tuned frequency the higher the achievable output power.

Channel Standby and RF Enable

The SC5506B has independent standby and output enable features for both channels. The user may

wish to place one or both of the channels into standby mode to reduce power consumption and thus

lower the operating temperature of the device under the same environmental conditions. Putting one

channel into standby also eliminates its signal generation, and as a result the remaining operational

channel does not receive any cross-signal contamination, especially when generating low level signals.

Although the device has the option to independently disable the RF output of one channel or the other,

this feature does not shut down the internal synthesizer, so there still exists the possibility of

contaminating signals. They are usually very low but might not be tolerated in some applications. Taking

either channel out of standby requires the device to wait for the power rails to settle and all internal

components to be reprogrammed, usually on the order of one second.

Disabling the RF output moves the frequency to some very low value so that the step attenuators and

the voltage controlled attenuator have the most effective attenuation. Combined, this will push the

signal level below -100 dBm. Enabling the RF output is nearly instantaneous as all components remain

active even when the RF output is disabled.

Modes of RF Generation

The SC5506B has both single fixed tone and list mode operation for both channels, however only one

channel can be selected for sweep/list mode at time. In single fixed tone mode, it operates as a normal

SC5506B Operating & Programming Manual Rev 1.2.2 11

synthesizer where the user writes the frequency (RF_FREQUENCY) register to change the frequency. In

list mode, the device is triggered to automatically run through a set of frequency points that are either

entered directly by the user or pre-computed by the device based on user parameters. Configuration of

the device for list mode operation is accomplished by setting up the LIST_MODE_CONFIG register.

Sweep Function

When frequency points are generated based on the start/stop/step set of frequencies, this is (in

the context of this product) known as putting the device into sweep. When the sweep function

is enabled, the frequency points are incrementally stepped with a constant step size either in a

linearly increasing or linearly decreasing fashion.

List Function

The list function requires that the frequency points are read in from a list provided by the user.

The user will need to load the frequency points into the list buffer via the LIST_BUFFER_WRITE

register, or have the device read the frequency points from the EEPROM into it.

Sweep Direction

The sweep can be chosen to start at the beginning of a list and incrementally step to the end of

the list or vice versa.

Sweep Waveform

The list of frequency points may be swept in a saw-tooth manner or triangular manner. If

sawtooth is selected, upon reaching the last frequency point the device returns back to the

starting point. Plotting frequency versus time reveals a sawtooth pattern. If triangular is

selected, the device will sweep linearly from the starting point, then reverse its direction after

the last (highest or lowest) frequency and sweep backwards toward the start point, mapping out

a triangular waveform on a frequency versus time graph.

Dwell Time

The dwell time at each frequency, in either sweep or list modes, is determined by writing to the

LIST_DWELL_TIME register. The dwell time step increment is 500 s. However, the

recommended minimum dwell time is 1 ms, which allows sufficient time for the signal to settle

before a measurement is made. Due to the size limitation of the onboard RAM, it is not possible

to have a pre-calculated configuration parameters list that could be used to program the various

functions of the device, decreasing the setup time of the device for frequency change. As a

result, for each frequency change the configuration parameters are dynamically computed. This

overhead computational time to handle the mathematics, triggers, timers, and interrupts may

increase the effective frequency settling time close 500 s. The amplitude computational time

alone is close to 300 s. If the sweep is over a narrow range, it is best to disable the automatic

power leveling feature, allowing faster frequency sweeps. By default whenever the frequency is

changes, the device re-computes a set of new parameters to set the ALC. Over short range

SC5506B Operating & Programming Manual Rev 1.2.2 12

frequencies, the parameters are similar so the amplitude variation may be acceptable. If

automatic power leveling is turned on, allow for a minimal dwell time of 2-5 ms.

List Cycles

The number of repeat cycles for a sweep or list is set by writing the LIST_CYCLE_COUNT register.

Writing the value 0 to the register will cause the device to repeat the sweep/list forever until a

trigger is sent or the RF mode is changed to single fixed tone mode via the RF_MODE register.

Upon completion of the a cycle, the frequency may be set to end on the last frequency point or

return back the starting point. This is cycle ending behavior is configured with bit [5] of the

LIST_MODE_CONFIG register.

Trigger Sources

The device may be set up for software or hardware triggering. This is defined in bit [4] of the

LIST_MODE_CONFIG register. If software trigger is selected, writing the LIST_SOFT_TRIGGER

register will trigger the device to perform the sweep/list function defined in the

LIST_MODE_CONFIG register. The device may also be triggered via the PXI trigger_0 line on the

back plane. Hardware trigger occurs on a high to low transition state of this line.

Hardware Trigger Modes

The device may be triggered to start a sweep or list then uses the next trigger to stop it. In

triggered start/stop mode, alternating triggers will start and stop the sweep/list. In this mode,

start triggering will always return the frequency point to the beginning of the sweep/list. It does

not continue from where it had left off from a stop trigger. The device may also be triggered to

step to the next frequency with each start trigger. This is known as the triggered step mode.

Software triggering cannot perform the step trigger function. This can only be done through

hardware triggering. When hardware step triggering has started, performing a software trigger

or changing the RF mode to single fixed tone will take the device out of step trigger state before

a cycle is completed. The trigger input is on pin #6 of the micro-HDMI type-D digital connector.

Trigger Out Modes

The device can be set to send out a high to low transition signal when the configuration of a

frequency by the device is completed; that is, it has completed all necessary computations, and

has successfully written data to the appropriate components. This trigger pulse can be sent on

the completion of every step frequency or on the last frequency of a sweep cycle. This trigger

signal is present on pin #1 (Trigger Out) of the micro HDMI type-D digital I/O connector.

SC5506B Operating & Programming Manual Rev 1.2.2 13

Default Startup Mode

The factory power-up state for the device is detailed in Table 4. The default state can be changed to the

current state of either channel programmatically, allowing the user to power up the device in the last

saved state without having to reprogram.

Table 4. Factory default power-up state.

 CH1 CH2

Frequency 2.0 GHz 2.4 GHz

Power 0.00 dBm 0.00 dBm

RF Output Enabled Enabled

ALC Mode Closed Loop Closed Loop

Standby Disabled Disabled

RF Mode Fix Fix

Auto Level Enabled Enabled

Ref Out Disabled

Ext Ref Lock Disabled

SC5506B Operating & Programming Manual Rev 1.2.2 14

S C 5 5 0 6 B P R O G R A M M I N G I N T E R F A C E

Device Drivers

The SC5506B is programmed by writing to its set of configuration registers, and its status read back

through its set of query registers. The user may choose to program directly at register level or through

the API library functions provided. These API library functions are wrapper functions of the registers that

simplify the task of configuring of the register bytes. The register specifics are covered in the next

section. Writing to and reading from the device at the register level through the API involves calls to the

sc5506b_RegWrite and sc5506b_RegRead functions respectively.

For Microsoft WindowsTM operating systems, The SC5506B API is provided as a dynamic linked library,

sc5506b.dll, which is available for 32bit and 64bit operating systems. This API is based on the libusb-1.0

library and therefore it is required to be installed on the system prior to development. The libusb-1.0.dll

will install along with the sc5506b.dll, and along with the header files for development. However for

possible newer versions of libusb-1.0, visit http://libusbx.org to check for version updates and

downloads. To install the necessary drivers, right click on the sc5506b.inf file in the Win\ directory and

chose install. When the device is connected to a USB port, the host computer should identify the device

and load the appropriate driver. For more information, see the SC5506B_Readme.txt file in the Win\

directory.

For LabVIEWTM support, a full LabVIEW API is provided and is available in the Win\API\LabVIEW\

directory. To use the library, copy the “SignalCore” folder in that directory to %LabVIEW path%\instr.lib

location of your LabVIEW installation directory. The LabVIEW functions are simply VI wrappers around

sc5506b.dll. Code written purely in G that does not call or depend on external library functions is

available to our customers on request. If pure G code SC5506B API functions are to be used, the

National Instruments driver wizard packaged with NI-VISA should be used to create a driver for the

intended operating system. SignalCore's vendor ID is 0x277C and the SC5506B product ID (PID) is

0x0022.

For other operating systems, users will need to write and compile their own drivers. The device register

map provides the necessary information to successfully implement a driver for the SC5506B. Driver code

based on libusb-1.0 is available to our customers on request. Should the user require assistance in

writing an appropriate API other than that provided, please contact SignalCore for additional example

code and hardware details.

Using the Application Programming Interface (API)

The SC5506B API library functions make it easy for the user to communicate with the device. Using the

API removes the need to understand register-level details - their configuration, address, data format,

etc. Using the API, commands to control the device are greatly simplified. For example, to obtain the

device temperature, the user simply calls the function sc5506b_get_device_temperature, or calls

sc5506b_set_frequency to tune the frequency. The software API is covered in detail in the “USB

Software API Library Functions” section.

http://libusbx.org/

SC5506B Operating & Programming Manual Rev 1.2.2 15

SPI and RS-232 Programming

Please see the SPI and RS-232 sections of this manual for interfacing to the device registers using either

of these communication methods.

SC5506B Operating & Programming Manual Rev 1.2.2 16

S E T T I N G T H E S C 5 5 0 6 B : W R I T I N G T O

C O N F I G U R A T I O N R E G I S T E R S

Configuration Registers

The users may write the configuration registers (write only) directly by calling the sc5506b_reg_write

function. The syntax for this function is sc5506b_reg_write(dev_handle, reg_byte, instruct_word). The

instruct_word takes a 64 bit-word. However, the function will only send the required number of bytes

to the device. These registers are the same for USB, SPI, and RS-232. Table 5 summarizes the register

addresses (commands) and the effective bytes of command data.

Table 5. Configuration registers.

Register Name
Register
Address

Serial
Range

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INITIALIZE 0x01 [7:0] Open Open Open Open Open Open Open Mode

SET_SYSTEM_ACTIVE 0x02 [7:0] Open Open Open Open Open Open Open
Enable

LED

RF_MODE 0x05 [7:0] Open Open Open Open Open Open Channel Mode

LIST_MODE_CONFIG 0x06 [7:0]
Trig out
mode

Trig out
enable

Return
to start

Step on
trig

HW/SW
trig

Trig
/saw

Dir
Sweep

/list

LIST_START_FREQ 0x07

[7:0] Frequency Word (Hz) [7:0]

[15:8] Frequency Word (Hz) [15:8]

[23:16] Frequency Word (Hz) [23:16]

[31:24] Frequency Word (Hz) [31:24]

[39:32] Frequency Word (Hz) [39:32]

LIST_STOP_FREQ 0x08

[7:0] Frequency Word (Hz) [7:0]

[15:8] Frequency Word (Hz) [15:8]

[23:16] Frequency Word (Hz) [23:16]

[31:24] Frequency Word (Hz) [31:24]

[39:32] Frequency Word (Hz) [39:32]

LIST_STEP_FREQ 0x09

[7:0] Frequency Word (Hz) [7:0]

[15:8] Frequency Word (Hz) [15:8]

[23:16] Frequency Word (Hz) [23:16]

[31:24] Frequency Word (Hz) [31:24]

[39:32] Frequency Word (Hz) [39:32]

LIST_DWELL_TIME 0x0A

[7:0] Word [7:0]

[15:8] Word [15:8]

[23:16] Word [23:16]

[31:24] Word [31:24]

LIST_CYCLE_COUNT 0x0B

[7:0] Word [7:0]

[15:8] Word [15:8]

[23:16] Word [23:16]

[31:24] Word [31:24]

LIST_BUFFER_POINTS 0x0C
[7:0] Word [7:0]

[15:8] Word [15:8]

SC5506B Operating & Programming Manual Rev 1.2.2 17

LIST_BUFFER_WRITE 0x0D

[7:0] Frequency Word (Hz) [7:0]

[15:8] Frequency Word (Hz) [15:8]

[23:16] Frequency Word (Hz) [23:16]

[31:24] Frequency Word (Hz) [31:24]

[39:32] Frequency Word (Hz) [39:32]

LIST_BUF_MEM_XFER 0x0E [7:0] Open Open Open Open Open Open Open Dir

LIST_SOFT_TRIGGER 0x0F [7:0] Open Open Open Open Open Open Open Open

RF_FREQUENCY 0x10

[7:0] Frequency Word (MHz) [7:0]

[15:8] Frequency Word (MHz) [15:8]

[23:16] Frequency Word (MHz) [23:16]

[31:24] Frequency Word (MHz) [31:24]

[39:32] Frequency Word (MHz) [39:32]

[47:40] Open Open Open Open Open Open Open Channel

RF_LEVEL 0x11

[7:0] RF Power Word [7:0]

[15:8] Sign Bit RF Power Word [14:8]

[23:9] Channel

RF_ENABLE 0x12 [7:0] Open Open Open Open Open Open Channel Mode

AUTO_LEVEL_DISABLE 0x13 [7:0] Open Open Open Open Open Open Channel Mode

RF_ALC_DISABLE 0x14 [7:0] Open Open Open Open Open Open Channel Mode

CHANNEL_STANDBY 0x15 [7:0] Open Open Open Open Open Open Channel Mode

REFERENCE_SETTING 0x16 [7:0] Open Open Open Open Open Open
Ref Out
Enable

Lock
Enable

USER_EEPROM_WRITE 0x1B

[7:0] Data [7:0]

[15:8] EEPROM Address [7:0]

[23:16] EEPROM Address [15:8]

REFERENCE_DAC_VALUE 0x1D
[7:0] DAC word [7:0]

[15:8] Open Open DAC word [13:8]

STORE_DEFAULT_STATE 0x23 [7:0] Open Open Open Open Open Open Open Open

SET_ALC_DAC_VALUE 0x24

[7:0] ALC DAC Word [7:0] (1/100 dBm)

[15:8] Sign (+ / -) ALC DAC Word[14:8] (1/100 dBm)

[23:16] Open Open Open Open Open Open Open Channel

SC5506B Operating & Programming Manual Rev 1.2.2 18

To write to the device through USB transfers such as bulk transfer, it is important to send data with the

register byte first, followed by the most significant bit (MSB) of the data bytes. For example, to set the

RF power level of channel 2 to a particular amplitude, the byte stream would be [0x11][0x01][15:8][7:0].

Initializing the Device

INITIALIZE (0x01) - Writing 0x01 to this register will reset the device to the default power-on state.

Writing 0x00 will reset the device but leave it in the current state. The user has the ability to define the

default startup state by writing to the STORE STARTUP STATE (0x23) register, described later in this

section.

Setting the System Active LED

SET_SYSTEM_ACTIVE (0x02) - This register simply turns on the front panel “active” LED with a write of

0x01, or turns off the LED with a write of 0x00. This register is generally written when the device driver

opens or closes the device.

Setting the RF Mode (Fix/List)

RF_MODE (0x05) - This register puts the selected channel into fix frequency mode or list/sweep mode.

Bit 1 selects the channel 1 or channel 2 with 0 or 1 respectively. Bit 0 chooses the fix or list mode with 0

or 1 respectively.

Setting the List Behavior

LIST_MODE_CONFIG (0x06) - This register configures the list behavior. Each bit is detailed below.

• Bit 7: Trigger-Out-Mode selects whether the output trigger pin (Pin #1 of the digital I/O

connector) is triggered on every frequency step or at the end of a cycle.

• Bit 6: Trigger-Out-Enable enables output triggering.

• Bit 5: Return-To-Start returns the frequency to the starting point after a cycle count is

completed.

• Bit 4: Hardware-Trigger-Stepping will step to the next frequency point on the list if enable.

Otherwise it behaviors as Start-Stop triggers

• Bit 3: Hardware-Trigger if selected the device expects triggering from the Trigger Input pin of

the device (Pin #6 of the digital I/O connector), otherwise it expects a software trigger to start

the sweep/list.

• Bit 2: Triangular-Waveform if selected will traverse the list from the beginning point to the

ending point and then reverses direction back to the beginning point as a complete cycle. If

unselected

• Bit 1: High-To-Low if selected will start from the end of the list to the beginning or from the stop

frequency to the start frequency, others it will start at the beginning of the list.

• Bit 0: Start-Stop-Step (Sweep-Mode) will use frequency list points computed using the stop,

start, and step frequency points, otherwise it will use the list stored in the list buffer.

SC5506B Operating & Programming Manual Rev 1.2.2 19

Setting the Sweep Frequencies

A list of frequency points used for sweep can be generated dynamically using the start, stop and

step frequencies that at enter into the device through the following registers:

LIST_START_FREQ (0x07) - This register sets the list start frequency. Data is sent as a 40 bit word

with the LSB in Hz.

LIST_STOP_FREQ (0x08) - This register sets the list stop frequency. Data is sent as a 40 bit word

with the LSB in Hz.

LIST_STEP_FREQ (0x09) - This register sets the list step frequency. Data is sent as a 40 bit word

with the LSB in Hz.

Setting the Sweep/List Dwell Time

LIST_DWELL_TIME (0x0A) - This register sets the dwell time at each frequency when the device

is set to sweep through a list of frequencies. This parameter is ignored when the device is set to

step using the external hardware trigger.

Setting the List Cycle Count

LIST_CYCLE_COUNT (0x0B) - This register set the number of cycles to sweep through when the

device is set up to start a sweep on trigger.

Setting the List Buffer Size

LIST_BUFFER_POINTS (0x0C) - This register sets the size of the list buffer to sweep/step

through.

Populating the List Buffer

LIST_BUFFER_WRITE (0x0D) - This register enters the frequencies into the buffer that is in

memory. The maximum number of frequency points is 2048. To set the device into write mode,

0x0000000000 must be written first. This will indicate to the device that to save successive

writes into the buffer incrementally beginning at index 0. When all the frequencies are entered,

writing 0xFFFFFFFFFF to the buffer will terminate the write process and the list buffer size

automatically assigned as the last index. The size can be override using register 0x0C.

Transferring the List Buffer to and from EEPROM

LIST_BUF_MEM_XFER (0x0E) - This register transfers the buffer in RAM memory to the EEPROM

or vise versa. Writing a “0” will transfer the list from RAM to EEPROM, and “1” transfers it from

EEPROM to RAM.

SC5506B Operating & Programming Manual Rev 1.2.2 20

Software Trigger

LIST_SOFT_TRIGGER (0x0F) - This register trigger the start or stop of a sweep when the device is

configured via register 0x06 for software triggering.

Setting the RF Frequency

RF_FREQUENCY (0x10) - This register set the RF frequency for each channel. Data is sent as a 40

bit word with the LSB in Hz.

Setting the RF Power

RF_LEVEL (0x11) - This register sets the RF power level for each channel. The LSB is 1/100th of a

dB and absolute magnitude is carried in the first 15 bits; bits 14 down to 0. The sign bit is

indicated on bit 15. Setting bit 15 high implies a negative magnitude. For example, to write

10.05 dBm to the register, the data is simply 1005 (0x03ED). For -10.05 dBm, the data is 33773

(0x83ED).

Setting RF Output Enable

RF_ENABLE (0x12) - This register enables or disables the RF signal output for each channel.

Setting bit 0 low (0) disables RF output. Setting bit 0 high (1) enables RF output.

Disabling the Auto Level Feature

AUTO_LEVEL_DISABLE (0x13) – When changing frequency on either channel, the device will

calculate new settings for the amplitude control components such that the amplitude remains

the same as the last setting. If the amplitude is also changed at the new frequency setting, the

user has the option to turn off this auto power adjustment. By default, auto power adjustment

is enabled. To disable auto power adjustment set bit 0 of this register high (1).

Setting the RF Automatic Level Control (ALC) Mode

RF_ALC_DISABLE (0x14) – For each channel independently, writing 0x00 to this register puts the

ALC in a closed loop operation. Writing 0x01 will run the ALC in an open loop. See the “Output

Amplitude Control” section to understand the differences between the modes.

Setting the Device Standby Mode

CHANNEL_STANDBY (0x15) – Writing 0x01 to this register will power-down the analog/RF

circuitry of the channel. Writing 0x00 to this register will enable the analog/RF circuitry and the

channel will return to its last programmed state.

SC5506B Operating & Programming Manual Rev 1.2.2 21

Setting the Reference Clock

REFERENCE_SETTING (0x16) - This register sets the behavior of the reference clock section. Bit 1

enables (1) or disables (0) the output reference signal, and Bit 0 enables (1) or disables (0) the

device to phase-lock to an external source. It is important that if the device is not intended to

lock externally, the external source connection should be removed from the “ref in” connector.

Even with external locking disabled, the presence of a large signal from the external source on

the reference input terminal could potentially modulate the internal references, causing a spur

offset in the RF signal.

Writing to the User EEPROM

USER_EEPROM_WRITE (0x1B) - There is an onboard 32 kilobyte EEPROM for the user to store

data. User data is sent one byte at a time and is contained in the last (least significant) byte of

the three bytes of data written to the register. The other two bytes contain the write address in

the EEPROM. For example, to write user data 0x22 into address 0x1F00 requires writing

0x1F0022 to this register.

Setting the Reference DAC Value

REFERENCE_DAC_VALUE (0x1D) - The frequency precision of the device’s 10 MHz TCXO is set by

the device internally and the factory calibrated unsigned 14 bit value is written to the reference

DAC on power-up from the EEPROM. The user may choose to write a different value to the

reference DAC by accessing this register for example, to correct for long-term accuracy drift.

Storing the Startup State

STORE_DEFAULT_STATE (0x23) – Writing to this register will save the current device state as the

new default power on (startup) state. All data written to this register will be ignored as only the

write command is needed to initiate the save.

Setting the RF ALC DAC Value

SET_ALC_DAC_VALUE (0x24) - Writing a 14 bit control word to the ALC DAC register adjusts

output amplitude. This is useful when the user wants to make minute adjustments to the power

level.

SC5506B Operating & Programming Manual Rev 1.2.2 22

Q U E R Y I N G T H E S C 5 5 0 6 B : W R I T I N G T O

R E Q U E S T R E G I S T E R S

The registers to read data back from the device (such as device status) are accessed through the

sc5506b_reg_read function. The function and parameter format for this command is

sc5506b_reg_read(dev_hand, reg_byte, instruct_word,*data_out). Any instructions in addition to the

register call is placed into “instructWord”, and data obtained from the device is returned via the pointer

value data_out. The set of request registers are shown in Table 6.

Table 6. Query registers.

Register Name
Register

Address
Serial Range Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

GET_TEMPERATURE 0x17 [7:0] Open Open Open Open Open Open Open Open

GET_DEVICE_STATUS 0x18 [7:0] Open Open Open Open Open Open Open Open

USER_EEPROM_READ 0x1A
[7:0] EEPROM Address [7:0]

[15:8] EEPROM Address [15:8]

GET_RF_PARAMETERS 0x25 [7:0] RF parameter to get[0-9]

GET_DEVICE_INFO 0x26 [7:0] Device info to get [0-5]

GET_LIST_BUFFER 0x27
[7:0] EEPROM Address [7:0]

[15:8] EEPROM Address [15:8]

GET_ALC_DAC_VALUE 0x39 [7:0] Open Open Open Open Open Open Open Open

To read from the device using native USB transfers instead of the sc5506b_reg_read function requires

two operations. First, a write transfer is made to the device ENPOINT_OUT to tell the device what data

needs to be read back. Then, a read transfer is made from ENDPOINT_IN to obtain the data. The

number of valid bytes returned varies from 1 to 5 bytes. See the register details below.

Reading the Device Temperature

GET_TEMPERATURE (0x17) - Data returned by this register is 4 bytes long that needs to be type-casted

correctly to floating point representation to obtain the temperature in degrees Celsius. It is not

recommended to read the temperature too frequently, especially once the SC5506B has stabilized in

temperature. The temperature sensor is a serial device located inside the RF module. Therefore, like any

other serial device, reading the temperature sensor requires sending serial clock and data commands

from the processor. The process of sending clock pulses on the serial transfer line may cause unwanted

spurs on the RF signal as the serial clock could potentially modulate the internal oscillators.

Furthermore, once the SC5506B stabilizes in temperature, repeated readings will likely differ by as little

as 0.25 OC over extended periods of time. Given that the gain-to-temperature coefficient is on the order

of less than -0.01 dB/OC, gain changes between readings will be negligible.

SC5506B Operating & Programming Manual Rev 1.2.2 23

Reading the Device Status

GET_DEVICE_STATUS (0x18) - This register, summarized in Table 7, returns the device status

information such as phase lock status of the PLL, current reference settings, etc. Data is contained in the

first four bytes.

Table 7. Description of the status data bits.

Bit Description
[31] 10 MHz TCXO Reference PLL Status
[30] 100 MHz VCXO Reference PLL Status
[29] Channel 2 fine PLL status
[28] Channel 2 coarse PLL status
[27] Channel 2 sum PLL status
[26] Channel 1 fine PLL status
[25] Channel 1 coarse PLL status
[24] Channel 1 sum PLL status
[23] Current list mode channel selected
[22] Ch2 auto level disabled
[21] Ch2 auto level disabled
[20] Ch2 ALC disabled
[19] Ch1 ALC disabled
[18] Ch2 output enabled
[17] Ch1 output enabled
[16] Ch2 RF mode
[15] Ch1 RF mode
[14] Ch2 Standby status
[13] Ch1 Standby status
[12] List mode running status (cycle started)
[11] Device accessed
[10] External reference detected

[9] Reference out enable
[8] Reference lock enable
[7] Out on Step/ Out on cycle
[6] Trig Out Enable
[5] Return to Start/Stop at End
[4] Trig to Step/Trig to Start-Stop
[3] Hard Trig/Soft Trig
[2] Triangular/Saw tooth
[1] High-To-Low or Low to High
[0] Start-Stop-Step Sweep Mode or List

Reading the User EEPROM
USER_EEPROM_READ (0x1A) - Once data has been written to the user EEPROM, it can be retrieved by

calling this register and using the process outlined next for reading calibration data. The maximum

address for this EEPROM is 32768. A single byte (first byte) is returned.

SC5506B Operating & Programming Manual Rev 1.2.2 24

Reading the Current RF Parameters

GET_RF_PARAMETERS (0x25) – There are 9 different parameters to return. Data is returned in 5 bytes,

however not every parameter has 5 bytes of valid data. The following details the data returned and its

valid bytes.

Table 8 RF parameters

Parameter Description Number of Valid bytes
0 Ch1 RF frequency First 5 Bytes, convert to ULONG64 in Hz
1 Ch2 RF frequency First 5 Bytes, convert to ULONG64 in Hz
2 List start frequency First 5 Bytes, convert to ULONG64 in Hz
3 List stop frequency First 5 Bytes, convert to ULONG64 in Hz
4 List step frequency First 5 Bytes, convert to ULONG64 in Hz
5 List dwell time First 4 Bytes, convert to U32 in 0.5ms
6 List cycles First 4 Bytes, convert to U32
7 List buffer point First 4 Bytes, convert to U32
8 Ch1 RF level First 4 Bytes, typecast to float
9 Ch2 RF level First 4 Bytes, typecast to float

Reading the Device Information

GET_DEVICE_INFO (0x26) Device information such as the product serial number, firmware version, and

hardware version can be obtained from querying the register with the required information parameter.

Table 9 details the returned contents of each information parameter.

Table 9 Device Information

Parameter Description Number of Valid bytes
0 Product Serial Number First 4 Bytes, convert to U32
1 Hardware revision First 4 Bytes, typecast to float
2 Firmware revision First 4 Bytes, typecast to float

3 Manufacturing date

First 4 Bytes : First Byte – Year (eg 15)
: Second – Month
:Third – Day
:Fourth – hour

Reading the LIST BUFFER Value

GET_LIST_BUFFER (0x27) The register reads the frequency value at the requested address. Data is

returned in the first 5 bytes and needs to be converted to U64 word in Hz.

Reading the RF ALC DAC Value

GET_ALC_DAC_VALUE (0x39) - The user may be interested to obtain the current value of the ALC DAC

for the purpose of making minor adjustments to the RF output power level. Data is returned in the first

2 bytes and only the first 14 bits contain valid data.

SC5506B Operating & Programming Manual Rev 1.2.2 25

C A L I B R A T I O N E E P R O M M A P

Table 10. Calibration EEPROM map.

EEPROM
ADDRESS

(HEX)

NUMBER OF
DATA POINTS

TYPE DESCRIPTION

0 1 U32 Factory information

4 1 U32 Product serial number

8 1 U32 RF module number

C 1 U32 Product manufacture date

10 1 U32 Last calibration date

14 4 NA Reserved

24 1 F32 Firmware revision

28 1 F32 Hardware revision

2C 40 F32 Reserved

CF 1 U8 Startup state (reference)

D0 32 U8 Startup state (synth)

F0 1 U32 TCXO DAC calibration value

F4 1 F32 Calibration temperature

F8 1 F32 ALC enabled temperature coefficient

FC 1 F32 ALC disabled temperature coefficient

100 128 U8 Ch0 VCO value

180 128 U8 Ch0 VCO tune value

200 128 U8 Ch1 VCO value

280 128 U8 Ch1 VCO tune value

300 1 U8 Reference attenuation value

301 125 U16 Cal frequencies (MHz)

3FB 3875 F32 Ch0 attenuator values

4087 125 F32 Ch0 ALC closed ref RF power

427B 125 U16 Ch0 ALC closed ref DAC value

4375 375 F32 Ch0 ALC closed coefficients (2nd order)

4951 125 F32 Ch0 ALC opened ref RF power

4B45 125 U16 Ch0 ALC opened ref DAC value

4C3F 375 F32 Ch0 ALC opened coefficient

521B 3875 F32 Ch1 attenuator values

8EA7 125 F32 Ch1 ALC closed ref RF power

909B 125 U16 Ch1 ALC closed ref DAC value

9195 375 F32 Ch1 ALC closed coefficients (2nd order)

9771 125 F32 Ch1 ALC opened ref RF power

9965 125 U16 Ch1 ALC opened ref DAC value

9A5F 375 F32 Ch1 ALC opened coefficient

SC5506B Operating & Programming Manual Rev 1.2.2 26

U S B S O F T W A R E A P I L I B R A R Y

F U N C T I O N S

SignalCore’s philosophy is to provide products to our customers whose lower hardware functions are

easily accessible. For experienced users who wish to use direct, low-level control of frequency and gain

settings, having the ability to access the registers directly is a necessity. However, others may wish for

simpler product integration using higher level function libraries and not having to program registers

directly. The functions provided in the USB SC5506B API dynamic linked library (sc5506b.dll) or LabVIEW

library are:

• sc5506b_search_devices

• sc5506b_open_device

• sc5506b_close_device

• sc5506b_reg_write

• sc5506b_reg_read

• sc5506b_init_device

• sc5506b_SetStandby

• sc5506b_set_frequency

• sc5506b_set_rf_mode

• sc5506b_list_mode_config

• sc5506b_list_start_frequency

• sc5506b_list_stop_frequency

• sc5506b_list_step_frequency

• sc5506b_list_dwell_time

• sc5506b_list_cycle_count

• sc5506b_list_buffer_points

• sc5506b_list_buffer_write

• sc5506b_list_buffer_transfer

• sc5506b_list_soft_trigger

• sc5506b_set_power_level

• sc5506b_set_rf_output

• sc5506b_set_alc_mode

• sc5506b_set_channel_standby

• sc5506b_set_out_level_disable

• sc5506b_set_clock_reference

• sc5506b_set_reference_dac

• sc5506b_wrtie_user_memory

• sc5506b_store_default_state

• sc5506b_set_alc_dac

• sc5506b_read_user_memory

• sc5506b_get_rf_parameters

• sc5506b_get_temperature

SC5506B Operating & Programming Manual Rev 1.2.2 27

• sc5506b_get_device_status

• sc5506b_get_device-info

• sc5506b_list_buffer_read

• sc5506b_get_alc_dac

Each of these functions is described in more detail on the following pages. Example code written in

C/C++ is located in the Win\Driver\src directory to show how these functions are called and used. First,

for C/C++ we define the constants and types which are contained in the C header file, sc5506b.h. These

constants and types are useful not only as an include for developing applications using the USB SC5506B

API, but also for writing device drivers independent of those provided by SignalCore.

SC5506B Operating & Programming Manual Rev 1.2.2 28

Constants Definitions

// Parameters for storing data in the onboard EEPROM
#define USEREEPROMSIZE 32768 // bytes

// Assign channel names
#define CH1 0
#define CH2 1

// Attenuator assignments
#define CH1ATTEN0 0
#define CH1ATTEN1 1
#define CH2ATTEN0 2
#define CH2ATTEN1 3

// Define error codes
#define SUCCESS 0
#define USBDEVICEERROR -1
#define USBTRANSFERERROR -2
#define INPUTNULL -3
#define COMMERROR -4
#define INPUTNOTALLOC -5
#define EEPROMOUTBOUNDS -6
#define INVALIDARGUMENT -7
#define INPUTOUTRANGE -8
#define NOREFWHENLOCK -9
#define NORESOURCEFOUND -10
#define INVALIDCOMMAND -11

#define INITIALIZE 0x01 // init device
#define SET_SYS_ACTIVE 0x02 // set the active led indicator on/off
#define RF_MODE 0x05 // sets the RF Mode: Single, Sweep/list
#define LIST_MODE_CONFIG 0x06 // Configure the sweep/list behavior
#define LIST_START_FREQ 0x07 // Set the list start frequency
#define LIST_STOP_FREQ 0x08 // Set the list stop frequency
#define LIST_STEP_FREQ 0x09 // Set the step frequency
#define LIST_DWELL_TIME 0x0A // The step time interval in 500 microseconds
#define LIST_CYCLE_COUNT 0x0B // number of cycles to run the sweep or list
#define LIST_BUFFER_POINTS 0x0C // Points to step though in the list buffer
#define LIST_BUFFER_WRITE 0x0D // write the frequency to the list buffer in RAM
#define LIST_BUF_MEM_XFER 0x0E // transfer the list between RAM and EEPROM
#define LIST_SOFT_TRIGGER 0x0F // Soft trigger.

#define RF_FREQUENCY 0x10 // set the frequency
#define RF_LEVEL 0x11 // Set Power of LO1
#define RF_ENABLE 0x12 // Enable RF output
#define AUTO_LEVEL_DISABLE 0x13 // Adjust the signal phase
#define RF_ALC_DISABLE 0x14 // Disable the ALC close loop mode
#define CHANNEL_STANDBY 0x15 // puts the channel into standby mode
#define REFERENCE_SETTING 0x16 // Reference Settings
#define GET_TEMPERATURE 0x17 // Device temperature
#define GET_DEVICE_STATUS 0x18 // load the board status
#define SERIAL_OUT_BUFFER 0x19 // Read the data from the SPI output buffer
#define USER_EEPROM_READ 0x1A // byte read from user EEPROM space
#define USER_EEPROM_WRITE 0x1B // user EEPROM write
#define REFERENCE_DAC_VALUE 0x1D // set reference DAC

#define STORE_DEFAULT_STATE 0x23 // store the new default state
#define SET_ALC_DAC_VALUE 0x24 // write the ALC DAC value
#define GET_RF_PARAMETERS 0x25 // Get the current Frequency

SC5506B Operating & Programming Manual Rev 1.2.2 29

#define GET_DEVICE_INFO 0x26 // load the device info
#define GET_LIST_BUFFER 0x27 // read the list buffer
#define GET_ALC_DAC_VALUE 0x39 // read the current alc DAC value

Type Definitions

typedef struct device_info_t
{
 unsigned int product_serial_number;
 float hardware_revision;
 float firmware_revision;
 struct date
 {
 unsigned char year;
 unsigned char month;
 unsigned char day;
 unsigned char hour;
 } man_date;
} device_info_t;

typedef struct list_mode_t
{
 unsigned char sss_mode;
 unsigned char sweep_dir;
 unsigned char tri_waveform;
 unsigned char hw_trigger;
 unsigned char step_on_hw_trig;
 unsigned char return_to_start;
 unsigned char trig_out_enable;
 unsigned char trig_out_on_cycle
} list_mode_t;

typedef struct
{
 unsigned char ch1_sum_pll_ld;
 unsigned char ch1_crs_pll_ld;
 unsigned char ch1_fine_pll_ld;
 unsigned char ch2_sum_pll_ld;
 unsigned char ch2_crs_pll_ld;
 unsigned char ch2_fine_pll_ld;
 unsigned char ref_100_pll_ld;
 unsigned char ref_10_pll_ld;
 } pll_status_t;

typedef struct
{
 unsigned char ref_lock_enable;
 unsigned char ref_out_enable;
 unsigned char ext_ref_detected;
 unsigned char device_accessed;
 unsigned char list_mode_running;
 unsigned char ch1_standby_enable;
 unsigned char ch2_standby_enable;
 unsigned char ch1_rf_mode;
 unsigned char ch2_rf_mode;
 unsigned char ch1_out_enable;
 unsigned char ch2_out_enable;
 unsigned char ch1_alc_disable;

SC5506B Operating & Programming Manual Rev 1.2.2 30

 unsigned char ch2_alc_disable;
 unsigned char ch1_auto_level_disable;
 unsigned char ch2_auto_level_disable;
} operate_status_t;

typedef struct
{
 list_mode_t list_mode;
 operate_status_t operate_status;
 pll_status_t pll_status;
} device_status_t;

typedef struct device_rf_params_t
{
 unsigned long long int ch1_rf_freq;
 unsigned long long int ch2_rf_freq;
 float ch1_rf_level;
 float ch2_rf_level;
 unsigned long long int list_start_freq;
 unsigned long long int list_stop_freq;
 unsigned long long int list_step_freq;
 unsigned int list_dwell_time;
 unsigned int list_cycles;
 unsigned int list_buffer_points;
} device_rf_params_t;

Function Definitions and Usage

The functions listed below are found in the sc5506b.dll dynamic linked library for the WindowsTM

operating system. These functions are also provided in the LabView library, sc5506b.llb. The LabView

functions contain context help (Cntrl-H) to help with the input and output parameters.

Function: sc5506b_search_devices

Definition: int sc5506b_search_devices (char **serial_number_list, int *count)

Output: char **serial_number_list (2-D array pointer list)

Description: sc5506b_search_devices searches for SignalCore SC5506B devices connected to the

host computer and outputs the number of devices found, and it also populates the char

array with their serial numbers. The user can use this information to open specific

device(s) based on their unique serial numbers. See sc5506b_open_device function on

how to open a device.

SC5506B Operating & Programming Manual Rev 1.2.2 31

Function: sc5506b_open_device

Definition: int sc5506b_ open_device (char *dev_serial_num, HANDLE* dev_handle)

Input: char * dev_serial_num (serial number string)

Return: * dev_handle (device handle pointer)

Description: sc5506b_open_device opens the device and turns the front panel “active” LED on if it is

successful. It returns a handle to the device for other function calls.

Function: sc5506b_close_device

Definition: int sc5506b_close_device(HANDLE dev_handle)

Input: HANDLE dev_handle(handle to the device to be closed)

Description: sc5506b_close_device closes the device associated with the device handle and turns off

the “active” LED on the front panel if it is successful.

Example: Code to exercise the functions that open and and close the device:

// Declaring
HANDLE dev_handle; //device handle
int num_of_devices; // the number of device types found
char **device_list; // 2D to hold serial numbers of the devices found
int status; // status reporting of functions

device_list = (char**)malloc(sizeof(char*)*MAXDEVICES); // MAXDEVICES serial numbers
to search
for (i=0;i<MAXDEVICES; i++)
 device_list [i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH); // SCI SN has 8
char
status = sc5506b_search_devices(device_list, num_of_devices); //searches for SCI for
device type
if (num_of_devices == 0)
{
 printf("No signal core devices found or cannot not obtain serial numbers\n");
 for(i = 0; i<MAXDEVICES;i++) free(device_list[i]);
 free(device_list);
 return 1;
}
printf("\n There are %d SignalCore %s USB devices found. \n \n", num_of_devices,
SCI_PRODUCT_NAME);
 i = 0;
 while (i < num_of_devices)
 {
 printf(" Device %d has Serial Number: %s \n", i+1, device_list[i]);
 i++;
 }
//** sc5506b_open_device, open device 0
status = sc5506b_open_device(device_list[0], &dev_handle);
// Free memory
 for(i = 0; i<MAXDEVICES;i++) free(device_list[i]);
 free(device_list); // Done with the device_list
 //
// Do something with the device
// Close the device
status = sc5506b_close_device(dev_handle);

SC5506B Operating & Programming Manual Rev 1.2.2 32

Function: sc5506b_reg_write

Definition: int sc5506b_reg_write(HANDLE dev_handle, unsigned char reg_byte,

 unsigned long long int instruct_word)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned char reg_byte (register address)

 unsigned long long int instructWord (the data for the register)

Description: sc5506b_reg_write writes the instruct_word data to the register specified by the

reg_byte.

Example: To set the power level to 2.00 dBm:

Function: sc5506b_reg_read

Definition: int sc5506b_reg_read(HANDLE dev_handle,

 unsigned char reg_byte,

 unsigned long long int instruct_word,

 unsigned long long int *received_word)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned char reg_byte (The address byte of the register to write to)

 unsigned long long int instruct_word (the data for the register)

 unsigned long long int *received_word (data to be received)

Description: sc5506b_reg_read reads the data requested by the instruct_word to the register

specified by the reg_byte. See the register map on Table 6 for more information.

Example: To read the status of the device:

Function: sc5506b_init_device

Definition: int sc5506b_init_device(HANDLE dev_handle, unsigned char mode)

Input: HANDLE dev_handle (handle to the opened device)

 Unsigned char mode (Set the mode of initialization)

Description: sc5506b_init_device initializes (resets) the device. Mode = 0 resets the device to the

default power up state. Mode = 1 resets the device but leaves it in its current state.

Function: sc5506b_SetFrequency

Definition: int sc5506b_SetFrequency(HANDLE dev_handle,

unsigned char channel,

 unsigned long long int frequency)

unsigned int device_status;
unsigned long long int tmp_u64;

int status = sc5506b_reg_read(dev_handle, GET_DEVICE_STATUS,0x00,&tmp_u64);
device_status = (unsigned int)tmp_u64;

int status = sc5506b_RegWrite(devHandle, RF_POWER, 200);

SC5506B Operating & Programming Manual Rev 1.2.2 33

Input: HANDLE dev_handle (handle to the opened device)

 unsigned char channel (channel name of target frequency change)

 unsigned long long int frequency (frequency in Hz)

Description: sc5506b_SetFrequency sets the channel RF frequency.

Function: sc5506b_set_rf_mode

Definition: sc5506b_set_rf_mode(HANDLE dev_handle,

 Unsigned char channel,

unsigned char rf_mode)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned char channel (channel to apply mode)

 unsigned char rf_mode (set RF mode of the channels)

Description: sc5506b_set_rf_mode sets the channels to fixed tone or sweep.

Function: sc5506b_list_mode_config

Definition: int sc5506b_list_mode_config(HANDLE dev_handle,

 const list_mode_t *list_mode)

Input: HANDLE dev_handle (handle to the opened device)

 const list_mode_t *list_mode (list mode setup)

Description: sc5506b_ListModeConfig configures the list mode behavior. See the document for more

information on the modeConfig structure.

Function: sc5506b_list_start_freq
Definition: int sc5506b_list_start_freq(HANDLE dev_handle,

 unsigned long long int freq)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned long long int freq (frequency in Hz)

Description: sc5506b_ list_start_freq sets the sweep start frequency.

Function: sc5506b_list_stop_freq

Definition: int sc5506b_list_stop_freq(HANDLE dev_handle,

 unsigned long long int freq)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned long long int freq (frequency in Hz)

Description: sc5506b_ list_stop_freq sets the sweep stop frequency.

Function: sc5506b_list_step_freq

Definition: int sc5506b_list_step_freq(HANDLE dev_handle,

 unsigned long long int freq)

Input: HANDLE dev_handle (handle to the opened device)

SC5506B Operating & Programming Manual Rev 1.2.2 34

 unsigned long long int freq (frequency in Hz)

Description: sc5506b_list_step_freq sets the sweep step frequency.

Function: sc5506b_list_dwell_time

Definition: int sc5506b_list_dwell_time(HANDLE dev_handle,

 unsigned int dwell_time)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned int dwell_time (Time in 500 µs increments)

Description: sc5506b_list_dwell_time stet the sweep/list dwell time at each frequency point. Dwell

time is in 500 µs increments (1 = 500 µs, 2 = 1 ms, etc.).

Function: sc5506b_list_cycle_count

Definition: int sc5506b_list_cycle_count(HANDLE dev_handle,

 unsigned int cycle_count)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned int cycle_count (number of cycles)

Description: sc5506b_list_cycle_count sets the number of sweep cycles to perform before stopping.

To repeat the sweep continuously, set the value to 0.

Function: sc5506b_list_buffer_points

Definition: int sc5506b_list_buffer_points(HANDLE dev_handle,

unsigned int list_points)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned int list_points (number of points of the list buffer)

Description: sc5506b_list_buffer_points sets the number of list points in the list buffer to sweep or

step through. The list points must be smaller or equal to the points in the list buffer.

Function: sc5506b_list_buffer_write

Definition: int sc5506b_list_buffer_write(HANDLE dev_handle,

 unsigned long long int freq)

Input: HANDLE dev_handle (handle to the opened device)

 unsigned long long int freq (frequency in Hz)

Description: sc5506b_list_buffer_write writes the frequency buffer sequentially. If frequency value =

0, the buffer counter is reset to position 0 and subsequent writes will increment the

counter. Writing 0xFFFFFFFFFF will terminate the sequential write operation and sets

the list_buffer_points variable to the last counter value.

Function: sc5506b_list_buffer_transfer

Definition: int sc5506b_list_buffer_transfer(HANDLE dev_handle,

 unsigned char transfer_mode)

Input: HANDLE dev_handle (handle to the opened device)

SC5506B Operating & Programming Manual Rev 1.2.2 35

 unsigned char transferMode (transfer to EEPROM or RAM)

Description: sc5506b_list_buffer_transfer transfers the frequency list buffer from RAM to EEPROM

or vice versa.

Function: sc5506b_list_soft_trigger

Definition: int sc5506b_list_soft_trigger(HANDLE dev_handle)

Input: HANDLE dev_handle (handle to the opened device)

Description: sc5506b_list_soft_trigger triggers the device when it is configured for list mode and soft

trigger is selected as the trigger source.

Function: sc5506b_set_power_level

Definition: int sc5506b_set_power_level(HANDLE dev_handle,
unsigned char channel,

 float powerLevel)
Input: HANDLE dev_handle (handle to the opened device)
 unsigned char channel (channel name of target power level change)
 float powerLevel (set power in dBm)
Description: sc5506b_set_power_level sets the value of the desired output power level for the

channel.

Function: sc5506b_set_rf_output
Definition: int sc5506b_set_rf_output(HANDLE dev_handle,

 unsigned char channel,
unsigned char mode)

Input: HANDLE dev_handle (handle to the opened device)
 unsigned char channel (channel name of target RF output toggle)
 bool mode (disable/enable RF output)
Description: sc5506b_SetRfOut enables or disables the RF output on a channel.

Function: sc5506b_set_alc_mode
Definition: int sc5506b_set_alc_mode(HANDLE dev_handle,

unsigned char channel,
unsigned char mode)

Input: HANDLE dev_handle (handle to the opened device)
 unsigned char channel (channel name for desired ALC mode change)
 bool mode (closed or open loop operation of the ALC circuit)
Description: sc5506b_set_alc_mode sets the ALC loop to closed or open loop operation for a

channel.

Function: sc5506b_set_channel_standby
Definition: int sc5506b_set_channel_standby(HANDLE dev_handle,

unsigned char channel,
 unsigned char enable)

Input: HANDLE dev_handle (handle to the opened device)
 unsigned char channel (channel name to put into standby)
 bool enable Set to true (1) to set device in standby mode
Description: sc5506b_set_channel_standby puts a channel in standby mode where the power to the

analog circuits for that channel are disabled, conserving power.

SC5506B Operating & Programming Manual Rev 1.2.2 36

Function: sc5506b_set_auto_level_disable
Definition: int sc5506b_set_auto_level_disable(HANDLE dev_handle,

unsigned char channel,
unsigned char mode)

Input: HANDLE dev_handle (handle to the opened device)
 unsigned int channel (channel name to disable auto-level)
 bool mode (defines when to disable auto-level)
Description: sc5506b_ set_auto_level_disable disables the device from auto adjusting the power

level to the current state when frequency is changed. Disabling the auto adjust feature
allows the device to return faster after calling sc5506b_set_power_level. If the power
remains the same for the next tuned frequency, this should not be disabled.

Function: sc5506b_set_clock_reference
Definition: int sc5506b_set_clock_reference(HANDLE dev_handle,

bool ext_lock_enable,
 bool ref_out_enable)
Input: HANDLE dev_handle (handle to the opened device)
 bool ext_lock_enable (enables phase locking to an external source)
 bool ref_out_enable (enables the internal clock to be exported on the “ref out” port)
Description: sc5506b_set_clock_reference configures the reference clock behavior of the device.

Function: sc5506b_set_reference_dac
Definition: int sc5506b_set_reference_dac(HANDLE dev_handle,

unsigned int dac_value)
Input: HANDLE dev_handle (handle to the opened device)
 unsigned int dacValue (14bit value for the reference DAC)
Description: sc5506b_SetReferenceDac set the value of the DAC that tunes the internal reference

TXCO. The user may choose to override the value stored in memory for example, to
correct for long-term accuracy drift.

Function: sc5506b_write_user_memory
Definition: int sc5506b_write_user_memory(HANDLE dev_handle,

unsigned short mem_add,
 unsigned char data)
Input: HANDLE dev_handle (handle to the opened device)
 unsigned int mem_add (memory address to write to)
 unsigned char data (byte to be written to the address)
Description: sc5506b_ write_user_memory writes one byte of data to the memory address

specified.

Function: sc5506b_store_default_state
Definition: int sc5506b_ store_default_state (HANDLE dev_handle, unsigned char channel)
Input: HANDLE dev_handle (handle to the opened device)
 Unsigned char channel (channel)
Description: sc5506b_ store_default_state stores the current state of the channel of the device as

the default power-up state.

SC5506B Operating & Programming Manual Rev 1.2.2 37

Function: sc5506b_set_alc_dac

Definition: int sc5506b_set_alc_dac(HANDLE dev_handle,
unsigned char channel,

 unsigned short dac_value)
Input: HANDLE dev_handle (handle to the opened device)
 unsigned char channel (channel name of target ALC DAC)
 unsigned int dec_value (14 bit value for adjusting the ALC DAC)
Description: sc5506b_ set_alc_dac writes a value to the ALC DAC to control the RF output level for a

channel.

Function: sc5506b_read_user_memory

Definition: int sc5506b_read_user_memory(HANDLE dev_handle,
 unsigned short mem_add,
 unsigned char *data)
Input: HANDLE dev_handle (handle to the opened device)
 unsigned short mem_add (EEPROM memory address)
Output: unsigned char *data (the read back byte data)
Description: sc5506b_ReadUserEeprom reads back a byte from a specific memory address of the

user EEPROM.

Function: sc5506b_get_device_status

Definition: int sc5506b_ get_device_status(HANDLE dev_handle,
 deviceStatus_t *deviceStatus)
Input: HANDLE dev_handle (handle to the opened device)
Output: deviceStatus_t *deviceStatus (deviceStatus struct)
Description: sc5506b_ get_device_status retrieves the status of the device such as phase lock status

and current device settings.
Example: Code showing how to use function:

Function: sc5506b_get_temperature

Definition: int sc5506b_ get_temperature (HANDLE dev_handle,
 float *temp)
Input: HANDLE dev_handle (handle to the opened device)
Output: float *temp (temperature in degrees Celsius)
Description: sc5506b_ get_temperature retrieves the internal temperature of the device.

Function: sc5506b_get_rf_parameters

Definition: int sc5506b_get_rf_parameters(sc5506b_device_handle_t*dev_handle,
device_rf_params_t *device_rf_params)

deviceStatus_t *dev_status;
dev_status = (deviceStatus_t *)malloc(sizeof(deviceStatus_t));

int status = sc5506b_get_device_status(dev_handle, dev_status);

if(dev_status->pll_status.ref_10_pll_ld)
printf("The 10 MHz is phase-locked \n");
else
printf("The 10 MHz is not phase-locked \n");

free(dev_status);

SC5506B Operating & Programming Manual Rev 1.2.2 38

Input: sc5506b_device_handle_t*dev_handle (handle to the opened device)
 device_rf_params_t *device_rf_params (rf parameters)
Description: sc5506b_get_rf_parameters gets the current RF parameters such as RF1 frequency, RF2

frequency, and sweep start frequency, etc.

Function: sc5506b_get_device_info

Definition: int sc5506b_get_device_info(sc5506b_device_handle_t*dev_handle,
 device_info_t *device_info)

Input: sc5506b_device_handle_t*dev_handle (handle to the opened device)
Output: device_info_t *device_info (device information)
Description: sc5506b_get_device_info obtains the device information such as serial number,

hardware revision, firmware revision, and manufactured date.

Function: sc5506b_list_buffer_read

Definition: int sc5506b_list_buffer_read(sc5506b_device_handle_t*dev_handle,
 unsigned int point, unsigned long long int *freq)

Input: sc5506b_device_handle_t*dev_handle (handle to the opened device)
 unsigned int point (buffer point)
Output: unsigned long long int *freq (frequency)
Description: sc5506b_list_buffer_read reads the frequency at a point offset.

Function: sc5506b_get_alc_dac

Definition: int sc5506b_get_alc_dac(HANDLE dev_handle,
 unsigned char channel,
 unsigned int *dac_value)
Input: HANDLE dev_handle (handle to the opened device)
 unsigned char channel (channel name of target ALC DAC)
Output: unsigned char *dacValue (the read back byte data)
Description: sc5506b_get_alc_dac reads back the current ALC DAC value.

SC5506B Operating & Programming Manual Rev 1.2.2 39

S E R I A L P E R I P H E R A L I N T E R F A C E (S P I)

The SPI interface is implemented using 8-bit length physical buffers for both the input and output, hence

they need to be read and cleared before consecutive bytes can be transferred to and from them. The

process of clearing the SPI buffer and decisively moving it into the appropriate register takes CPU time,

so a time delay is required between consecutive bytes written to or read from the device by the host.

The chip-select pin (𝐶𝑆̅̅̅̅) must be asserted low before data is clocked in or out of the product. Pin 𝐶𝑆̅̅̅̅

must be asserted for the entire duration of a register transfer.

Once a full transfer has been received, the device will proceed to process the command and de-assert

low the SRDY pin. The status of this pin may be monitored by the host because when it is de-asserted

low, the device will ignore any incoming data. The device SPI is ready when the previous command is

fully processed and SRDY pin is re-asserted high. It is important that the host either monitors the SRDY

pin or waits for 750 us between register writes.

There are 2 SPI modes; 0 and 1. The default mode is 1, where data is clocked in and out of the device on

the falling edge of the clock signal. In mode 0, data is clocked in and out on the rising edge. To select

mode 0, pin 18 of the digital I/O connector must be pulled low to ground as the device is powered on or

as the reset line (pin 14) is toggle low-high. If pin 18 is pulled high or left unconnected, mode 1 (default)

is select.

Figure 3. SPI Mode 1 shown.

Register writes are accomplished in a single write operation. Register buffer lengths vary depending on

the register; they vary in lengths of 2 to 6 bytes, with the first byte being the register address, followed

by the data associated with that register. The (𝐶𝑆̅̅̅̅) pin must be asserted low for a minimum period of

1 𝜇𝑠 (TS, see Figure 4) before data is clocked in, and must remain low for the entire register write. The

clock rate may be as high as 5.0 MHz (TC = 0.2 𝜇𝑠), however if the external SPI signals do not have

sufficient integrity due trace issues, the rate should be lowered.

Figure 4 SPI timing.

MSB

CS

MISO

MOSI

CLK

MSB

LSB

LSB

TS TBTC

8 Bit Command/ Reg. Address Byte N (MSB) Byte N-1 (LSB)

CLK

DATA

CS

SC5506B Operating & Programming Manual Rev 1.2.2 40

As mentioned above, the SPI architecture limits the byte rate due to the fact that after every byte

transfer the input and output SPI buffers need to be cleared and loaded respectively by the device SPI

engine. Data is transferred between the buffers and the internal registers. The time required to perform

this task is indicated by 𝑇𝐵, which is the time interval between the end of one byte transfer and the

beginning of another. The recommended minimum time delay for 𝑇𝐵 is 1 𝜇𝑠. The number of bytes

transferred depends on the register. It is important that the correct number of bytes is transferred for

the associated device register, because once the first byte (MSB) containing the device register address

is received, the device will wait for the desired number of associated data bytes. The device will hang if

an insufficient number of bytes are written to the register. In order to clear the hung condition, the

device will need an external hard reset. The time required to process a command is also dependent on

the command itself. Measured times for command completions are between 50 𝜇𝑠 to 600 𝜇𝑠 after

reception. To change the frequency with auto leveling turned on requires the most computational time.

The computational time to change frequencies is approximately 250 𝜇𝑠 and to computational time to

change power level is approximately 350 𝜇𝑠.

 Writing the SPI Bus

The SPI transfer size (in bytes) depends on the register being targeted. The MSB byte is the command

register address as noted in the Configuration Registers section. The subsequent bytes contain the data

associated with the register. As data from the host is being transferred to the device via the SDI (MOSI)

line, data present on its SPI output buffer is simultaneously transferred back, MSB first, via the SDO

(MISO) line. The data return is invalid for most transfers except for those registers querying for data

from the device. See Reading the SPI Bus section below for more information on retrieving data from

the device. Figure 5 shows the contents of a single 3 byte SPI command written to the device. The

Querying the SC5506B: Writing to Request Registers section provides information on the number of data

bytes and their contents for an associated register. There is a minimum of 1 data byte for each register

even if the data contents are “zeros”.

Figure 5. Single 3 byte transfer buffer.

Reading the SPI Bus

Data is simultaneously read back during a SPI transfer cycle. Requested data from a prior command is

available on the device SPI output buffers, and these are transferred back to the user host via the SDO

pin. To obtain valid requested data would require querying the SERIAL_OUT_BUFFER, which requires 6

bytes of clock cycles; 1 byte for the device register (0x19) and 5 empty bytes (MOSI) to clock out the

returned data (MISO). An example of reading the device status from the device is shown in Figure 6.

23 15 7 0

Register Address Byte 1 Byte 0

SC5506B Operating & Programming Manual Rev 1.2.2 41

Figure 6. Reading queried data.

In the above example, valid data is present in the first 5 bytes - byte 4 down to byte 0, where byte 4 is

the most significant byte. Table 11 shows the valid data bytes associated with each of the querying

registers, while Table 12 shows the valid bytes associated with the requested contents of the register

0x25.

Table 11. Valid returned data bytes.

Register Name (Address) Register Code (Hex) Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

GET_TEMPERATURE 0x17 valid valid valid valid invalid

GET_DEVICE_STATUS 0x18 valid valid valid valid invalid

GET_RF_PARAMETERS 0x25 valid valid valid valid valid

GET_DEVICE_INFO 0x26 valid valid valid valid invalid

GET_LIST_BUFFER 0x27 valid valid valid valid valid

GET_ALC_DAC_VALUE 0x39 valid valid invalid invalid invalid

Table 12 Return Valid Data for GET_RF_PARAMETERS Register

Data Return Name Data Sent Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Ch1 RF Frequency 0x00 valid valid valid valid valid

Ch2 RF Frequency 0x01 valid valid valid valid valid

List Start Frequency 0x02 valid valid valid valid valid

List Stop Frequency 0x03 valid valid valid valid valid

List Step Frequency 0x04 valid valid valid valid valid

Sweep Dwell Time 0x05 valid valid valid valid invalid

Sweep Cycles 0x06 valid valid valid valid invalid

Sweep Buffer Points 0x07 valid valid valid valid invalid

Ch1 Power Level* 0x07 valid valid valid valid invalid

Ch1 Power Level* 0x08 valid valid valid valid invalid

While all return data for the GET_RF_PARAMETERS Register (0x25) are unsigned integers, the RF1 power

level is returned as a 4-byte flattened float which needs to be re-casted back to a float using *(float*)&.

InvalidInvalid

0x25 0x02

Byte4Invalid Byte3

0x19 0x00 0x00

Byte2 Byte1

0x00 0x00

Request for List-Start-

Frequency from the

GET_RF_PARAMETERS

register

Clock the data out with 5 byte write to register 0x19

Byte0

0x00

CLK

MOSI

MISO

CS

SC5506B Operating & Programming Manual Rev 1.2.2 42

P R O G R A M M I N G T H E R S - 2 3 2 I N T E R F A C E

The RS-232 version of the SC5506B has a standard interface buffered by an RS-232 transceiver so that it

may interface directly with many host devices, such as a desktop computer. The interface connector for

RS-232 communication is labeled “Digital I/O” on the front of the panel. Refer to Table 2 for position and

pin-out information. The device communication control set is provided in Table 13 below.

Table 13. RS-232 communication settings.

Baud rate Rate of transmission. Pin 18 of the Digital IO connector selects the rate. By

default if the pin is pulled high or open, the rate is set 56700 at power up or

upon HW reset. When the pin is pulled low or grounding it, the rate is set to

115200 upon reset or power up.

Data bits The number of bits in the data is fixed at 8.

Parity Parity is 0 (zero).

Stop bits 1 stop bit.

Flow control 0 (zero) or none.

Writing to the Device via RS-232

It is important that all necessary bytes associated with any one register are fully sent. In other words, if a

register requires a total of six bytes (address plus data) then all six bytes must be sent even though the

last byte may be a null. The device, upon receiving the first register addressing byte, will wait for all the

associated data bytes before acting on the register instruction. Failure to complete the register

transmission will cause the device to behave erratically or hang. Information for writing to the

configuration registers is provided in Table 5.

Reading from the Device via RS-232

To query information from the device, the query registers are addressed and data is returned. Valid

returned data vary in length, which are dependent on the register call. However total returned data

length (bytes 4 to 0) is the same as for SPI, that is 5 bytes long. Table 6 contains the query register

information. As with the configuration registers, it is important that the data byte(s) associated with the

query registers are sent even if they are nulls. The valid returned data length is also detailed in the

“Querying the SC5506B: Writing to Request Registers” section. Returned valid data are detailed in Table

11 and Table 12.

RS-232 WindowsTM API

The API for RS-232 control is provided only for the Windows operating system under the api\rs232\c

directory of the installation path. All API functions are provided in the sc5506b_rs232.dll library and with

the exception of 2 functions, namely sc5506b_search_devices and sc5506b_open_device, all functions

are identical to those for USB communication. Please refer to the Using the Application Programming

Interface (API) function descriptions and the sc5506b_rs232.h header file for proper usage. A C/C++

programming example is also provided under the examples subdirectory. For driver support of other

operating systems, please contact SignalCore support.

SC5506B Operating & Programming Manual Rev 1.2.2 43

RS-232 LabVIEW functions

LabVIEW function wrappers of the C/C++ API DLL are also provided for programming in the LabVIEW

environment. To use these functions and have them appear on the function palette, copy the

SignalCore/ and its sub-directories (containing the SC5506B_RS232 dir) into the instr.lib directory of the

LabVIEW installation path. A RS-232 version of the soft-front-panel software is available in LabVIEW and

may be compiled into an executable.

SC5506B Operating & Programming Manual Rev 1.2.1 44

C A L I B R A T I O N & M A I N T E N A N C E

The SC5506B is factory calibrated and ships with a certificate of calibration. SignalCore strongly

recommends that the SC5506B be returned for factory calibration every 12 months or whenever a

problem is suspected. The specific calibration interval is left to the end user and is dependent upon the

accuracy required for a particular application.

SC5506B calibration data is stored in the RF module (metal housing). Therefore, changing or replacing

interface adapters will not affect unit calibration. However, SignalCore maintains a calibration data

archive of all units shipped. Archiving this data is important should a customer need to reload calibration

data into their device for any reason. SignalCore also uses the archived data for comparative analysis

when units are returned for calibration.

Should any customer need to reload calibration data for their SC5506B, SignalCore offers free support

through support@signalcore.com. SignalCore will provide a copy of the archived calibration data along

with instructions on how to upload the file to the SC5506B.

The SC5506B requires no scheduled preventative maintenance other than maintaining clean, reliable

connections to the device as mentioned in the “Getting Started” section of this manual. There are no

serviceable parts or hardware adjustments that can be made by the user.

mailto:support@signalcore.com

SC5506B Operating & Programming Manual Rev 1.2.2 45

R E V I S I O N N O T E S

Rev 1.0.0 Initial release.

Rev 1.1.0 Change the open_device API function in its device handle return type

Rev 1.2.0 Added pin 8 to Table 2 as reset_b

Rev 1.2.1 Address deleted

Rev 1.2.2
Changed initialize 0x00 to reset the device but leave in current state, and 0x01 to reset

the device to the default power-on state

SC5506B Operating & Programming Manual Rev 1.2.2 46

